skip to main content


Search for: All records

Creators/Authors contains: "Hoggard, Mark J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    The possibility of a transient rheological response to ice age loading, first discussed in the literature of the 1980s, has received renewed attention. Transient behaviour across centennial to millennial timescales has been invoked to reconcile apparently contradictory inferences of steady-state (Maxwell) viscosity based on two distinct data sets from Greenland: Holocene sea-level curves and Global Navigation Satellite System (GNSS) derived modern crustal uplift data. To revisit this issue, we first compute depth-dependent Fréchet kernels using 1-D Maxwell viscoelastic Earth models and demonstrate that the mantle resolving power of the two Greenland data sets is highly distinct, reflecting the differing spatial scale of the associated surface loading: the sea-level records are sensitive to viscosity structure across the entire upper mantle while uplift rates associated with post-1000 CE fluctuations of the Greenland Ice Sheet have a dominant sensitivity to shallow asthenosphere viscosity. Guided by these results, we present forward models which demonstrate that a moderate low viscosity zone beneath the lithosphere in Maxwell Earth models provides a simple route to simultaneously reconciling both data sets by significantly increasing predictions of present-day uplift rates in Greenland whilst having negligible impact on predictions of Holocene relative sea-level curves from the region. Our analysis does not rule out the possibility of transient deformation, but it suggests that it is not required to simultaneously explain these two data sets. A definitive demonstration of transient behaviour requires that one account for the resolving power of the data sets in modelling the glacial isostatic adjustment process.

     
    more » « less
  2. SUMMARY

    A key initial step in geophysical imaging is to devise an effective means of mapping the sensitivity of an observation to the model parameters, that is to compute its Fréchet derivatives or sensitivity kernel. In the absence of any simplifying assumptions and when faced with a large number of free parameters, the adjoint method can be an effective and efficient approach to calculating Fréchet derivatives and requires just two numerical simulations. In the Glacial Isostatic Adjustment problem, these consist of a forward simulation driven by changes in ice mass and an adjoint simulation driven by fictitious loads that are applied at the observation sites. The theoretical basis for this approach has seen considerable development over the last decade. Here, we present the final elements needed to image 3-D mantle viscosity using a dataset of palaeo sea-level observations. Developments include the calculation of viscosity Fréchet derivatives (i.e. sensitivity kernels) for relative sea-level observations, a modification to the numerical implementation of the forward and adjoint problem that permits application to 3-D viscosity structure, and a recalibration of initial sea level that ensures the forward simulation honours present-day topography. In the process of addressing these items, we build intuition concerning how absolute sea-level and relative sea-level observations sense Earth’s viscosity structure and the physical processes involved. We discuss examples for potential observations located in the near field (Andenes, Norway), far field (Seychelles), and edge of the forebulge of the Laurentide ice sheet (Barbados). Examination of these kernels: (1) reveals why 1-D estimates of mantle viscosity from far-field relative sea-level observations can be biased; (2) hints at why an appropriate differential relative sea-level observation can provide a better constraint on local mantle viscosity and (3) demonstrates that sea-level observations have non-negligible 3-D sensitivity to deep mantle viscosity structure, which is counter to the intuition gained from 1-D radial viscosity Fréchet derivatives. Finally, we explore the influence of lateral variations in viscosity on relative sea-level observations in the Amundsen Sea Embayment and at Barbados. These predictions are based on a new global 3-D viscosity inference derived from the shear-wave speeds of GLAD-M25 and an inverse calibration scheme that ensures compatibility with certain fundamental geophysical observations. Use of the 3-D viscosity inference leads to: (1) generally greater complexity within the kernel; (2) an increase in sensitivity and presence of shorter length-scale features within lower viscosity regions; (3) a zeroing out of the sensitivity kernel within high-viscosity regions where elastic deformation dominates and (4) shifting of sensitivity at a given depth towards distal regions of weaker viscosity. The tools and intuition built here provide the necessary framework to explore inversions for 3-D mantle viscosity based on palaeo sea-level data.

     
    more » « less
  3. Modern global sea-level rise is anomalous relative to any natural variability over the past 4000 years. 
    more » « less
  4. null (Ed.)
    It is generally agreed that the Last Interglacial (LIG; ∼130 – 115 ka) was a time when global average temperatures and global mean sea level were higher than they are today. However, the exact timing, magnitude, and spatial pattern of ice melt is much debated. One difficulty in extracting past global mean sea level from local observations is that their elevations need to be corrected for glacial isostatic adjustment (GIA), which requires knowledge of Earth’s internal viscoelastic structure. While this structure is generally assumed to be radially symmetric, evidence from seismology, geodynamics, and mineral physics indicates that large lateral variations in viscosity exist within the mantle. In this study, we construct a new model of Earth’s internal structure by converting shear wave speed into viscosity using parameterisations from mineral physics experiments and geodynamical constraints on Earth’s thermal structure. We use this 3D Earth structure, which includes both variations in lithospheric thickness and lateral variations in viscosity, to calculate the first 3D GIA prediction for LIG sea level. We find that the difference between predictions with and without lateral Earth structure can be meters to 10s of meters in the near field of former ice sheets, and up to a few meters in their far field. We demonstrate how forebulge dynamics and continental levering are affected by laterally varying Earth structure, with a particular focus on those sites with prominent LIG sea level records. Results from four 3D GIA calculations show that accounting for lateral structure can act to increase local sea level by up to ∼1.5 m at the Seychelles and minimally decrease it in Western Australia. We acknowledge that this result is only based on a few simulations, but if robust, this shift brings estimates of global mean sea level from these two sites into closer agreement with each other. We further demonstrate that simulations with a suitable radial viscosity profile can be used to locally approximate the 3D GIA result, but that these radial profiles cannot be found by simply averaging viscosity below the sea level indicator site. 
    more » « less
  5. Geodetic, seismic, and geological evidence indicates that West Antarctica is underlain by low-viscosity shallow mantle. Thus, as marine-based sectors of the West Antarctic Ice Sheet (WAIS) retreated during past interglacials, or will retreat in the future, exposed bedrock will rebound rapidly and flux meltwater out into the open ocean. Previous studies have suggested that this contribution to global mean sea level (GMSL) rise is small and occurs slowly. We challenge this notion using sea level predictions that incorporate both the outflux mechanism and complex three-dimensional viscoelastic mantle structure. In the case of the last interglacial, where the GMSL contribution from WAIS collapse is often cited as ~3 to 4 meters, the outflux mechanism contributes ~1 meter of additional GMSL change within ~1 thousand years of the collapse. Using a projection of future WAIS collapse, we also demonstrate that the outflux can substantially amplify GMSL rise estimates over the next century. 
    more » « less